f(t)有最小值,g(t)有最大值:f(t)=√t+1/√t+√(t+1/t+1),定义域:t>0√t+1/√t≥2t+1/t+1≥3故:f(t)≥2+√3,当t=1时,等号成立故f(t)的最小值:2+√3g(t)=√t+1/√t-√(t+1/t+1),定义域:t>0g(t)=√(t+1/t+2)-√(t+1/t+1)=1/[√(t+1/t+2)+√(t+1/t+1)]=1/[t+1/√t+√(t+1/t+1)]=1/f(t)f(t)≥2+√3,故:0故g(t)的最大值:2-√3