第七位。
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。
直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
扩展资料
圆周率(π读pài)为一个常数(约等于3.无理数)。
即一个无理数,即无限不循环小数。在日常生活中,通常都用3.14来代表圆周率去进行近似计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
π为第十六个希腊字母。π这个符号,是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。
1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率,π在希腊字母中排行第十六,也是希腊语“周长”的第一个字母。1737年,瑞士大数学家欧拉也开始用π表示圆周率。从此,π便成了圆周率的代名词。
参考资料来源:百度百科-祖率
参考资料来源:百度百科-祖冲之
后七位。
祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。
祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“约率”用他的名字命名为“祖冲之圆周率”,简称“祖率”。
扩展资料:
1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率。1736年,瑞士大数学家欧拉也开始用“π”表示圆周率。从此“π”便成了圆周率的代名词。
圆周率的应用很广泛,尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。中国古代数学家们对这个问题十分重视,研究也很早。
在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。
东汉张衡推算出的圆周率值为3.162。三国时王蕃推算出的圆周率数值为3.155。魏晋的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术,将圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。
刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为3.1428,皮延宗求出圆周率值为22/7≈3.14。
祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。
参考资料来源:百度百科-祖冲之
第七位。
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。
直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
扩展资料
圆周率(π读pài)为一个常数(约等于3.无理数)。
即一个无理数,即无限不循环小数。在日常生活中,通常都用3.14来代表圆周率去进行近似计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
π为第十六个希腊字母。π这个符号,是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。
1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率,π在希腊字母中排行第十六,也是希腊语“周长”的第一个字母。1737年,瑞士大数学家欧拉也开始用π表示圆周率。从此,π便成了圆周率的代名词。
参考资料来源:百度百科-祖率
参考资料来源:百度百科-祖冲之
编辑于 2019-07-21
精确到(小数点后6位),推断到第7位。3.1415926与3.1415927之间。现3.14159265358.....
祖冲之第一个把圆周率精确推算到小数点后几位?第7位,在3.1415926~3.1415927之间