(1)由不等式f(x)<0的解集是(-1,5),可知二次不等式对应的方程的根,利用根与系数关系列式求a和c的值;
(2)求出函数f(x)的解析式后,借助于其图象分析函数在[0,3]上的单调性,运用单调性求函数f(x)在x∈[0,3]上的值域.
解:
由f(x)<0,得:ax²-4x+c<0,
不等式ax²-4x+c<0的解集是(-1,5),
故方程ax²-4x+c=0的两根是x1=-1,x2=5.
所以根据韦达定理:
4/a=x1+x2=4,
c/a=x1x2=−5
所以a=1,c=-5.
故f(x)=x²-4x-5=(x-2)²-9.
∵x∈[0,3],f(x)在[0,2]上为减函数,在[2,3]上为增函数.
∴当x=2时,f(x)取得最小值为f(2)=-9.
而当x=0时,f(0)=(0-2)²-9=-5,当x=3时,f(3)=(3-2)²-9=-8
∴f(x)在[0,3]上取得最大值为f(0)=-5.
∴函数f(x)在x∈[0,3]上的值域为[-9,-5].
(本题考查了一元二次不等式的解集与二次不等式对应的方程的根的关系,考查了利用函数的单调性求函数的值域,是基础题.)
祝楼主学习进步o(∩_∩)o!
f(x)=ax²-4x+c
∵解集是(-1,5)
∴a>0
4/a=-1+5,c/a=-1*5
a=1,c=-5
f(x)=x²-4x-5=(x-2)²-9
f(0)=-5
f(3)=-8
因此,值域为[-9,-5]
由于解集是(-1,5)因此两个根就是-1和5,然后f(x)<0的解集是一个闭区间,说明开口朝上
因此f(x)=a(x+1)(x-5)=ax^2-4ax-5a=ax^2-4x+c
得到a=1,c=-5
f(x)=x^2-4x-5
f(x)=(x-2)^2-9
因此在[0,3]上的最小值为f(2)=-9
最大值为f(0)=-5
f在[0,3]上的值域为[-9,-5]
很高兴为您解答!如果您满意我的回答,请点击下方的“采纳为满意回答”按钮。
如果有其他的问题可以继续追问,您也可以向我们的团队<数学辅导团>求助。
o(∩_∩)o 谢谢!