(1)∵{an}的前n项的和Sn=n2+1,
∴a1=S1=1+1=2,
a2=S2-S1=(4+1)-(1+1)=3,
a3=S3-S2=(9+1)-(4+1)=5,
a4=S4-S3=(16+1)-(9+1)=7,
a5=S5-S4=(25+1)-(16+1)=9.
(2)∵a2-a1=3-2=1,
a3-a2=5-3=2,
∴数列{an}不是等差数列.
(3)a1=S1=1+1=2,
n≥2时,an=Sn-Sn-1=(n2+1)-[(n-1)2+1]=2n-1,
n=1时,2n-1=1≠a1,
∴an=
.
2,n=1 2n?1,n≥2