第一题:在△ABC中,a、b、c分别为角A、B、C的对边,如果2b=a+c,B=30°,△ABC的面积为3⼀2,那么b=?

2024-12-27 08:12:19
推荐回答(2个)
回答1:

1、∵2b=a+c ①∴4b�0�5=a�0�5+c�0�5+2ac ②对∠B余弦定理:b�0�5=a�0�5+c�0�5-2ac cos(30)面积s=1/2ac sin(30)=3/2ac=6带回①②两式,得4b�0�5=a�0�5+c�0�5+12 ③b�0�5=a�0�5+c�0�5-6√3 ④ ③- ④得3b�0�5=12+6√3 即b�0�5=1+3+2+√3 完全平方 ∴b=1+√32、应用跟与方程关系有:b+c=9bc=32/3再用余弦定理的a�0�5=b�0�5+c�0�5-2bc cos(60)=(b+c)�0�5-3bc=81-32=49∴a=73、 (sinA+sinB)�0�5-(sinC)�0�5=3sinAsinB→sin�0�5A+sin�0�5B-sin�0�5C+2sinA*sinB=3sinAsinB→sin�0�5A+sin�0�5B-sin�0�5C=sinAsinB→(a/2r)�0�5+(b/2r)�0�5-(c/2r)�0�5=ab/(2r)�0�5→a�0�5+b�0�5-c�0�5=ab根据余弦定理2abcosC=a�0�5+b�0�5-c�0�5=ab→cosC=1/2→C=60→A+B=1204、b�0�5sin�0�5C+c�0�5sin�0�5B=2bccosBcosC→2*(2rsinBsinC)�0�5=2(4r^2sinBsinC)cosBcosC→sinBsinC=cosBcosC →cos(B+C)=0→B+C=90 直角三角形

回答2:

1S△abc=1/2acsinB=1/4ac=3/2ac=6 ,b^2=a^2+c^2-2accosB→(a+c)^2-2ac-2accosB→b^2=4b^2-2*6-2*6*√3/2→b=√3-12有无抄错啊!这么难解3(sinA+sinB)平方-(sinC)平方=3sinAsinB→sin^2A+sin^2B-sin^2C+2sinA*sinB=3sinAsinB→sin^2A+sin^2B-sin^2C=sinAsinB→(a/2R)^2+(b/2R)^2-(c/2R)^2=ab/(2R)^2→a^2+b^2c-^2=ab根据余弦定理2abcosC=ab→cosC=1/2→C=60→A+B=1204(bsinC)平方+(csinB)平方=2bccosBcosC→2(2RsinBsinC)^2=2(4R^2sinBsinC)cosBcosC→sinBsinC=cosBcosC 所以三角形ABC是等腰直角三角形