解:[2sin50˚+sin10˚(cos10˚+√3sin10˚)/cos10˚]√2cos10˚
=2√2sin50˚cos10˚+√2sin10˚(2sin40˚)
=2√2sin50˚cos10˚+√2sin10˚(2cos50˚)
= 2√2(sin50˚cos10˚+cos50˚sin10˚)
= 2√2sin60˚
=2√2*√3/2=√6
原式=[2sin(60°-10°)+sin10°+√3sin10°tan10°]√(1+2cos10°cos10°-1)
=(2sin60°cos10°-2sin10°cos60°+sin10°+√3sin10°tan10°)√2* cos10°
=(√3*cos10°-sin10°+sin10°+√3sin10°tan10°)√2* cos10°
=√2*√3(cos10°cos10°+cos10°sin10°tan10°)
=√6*(cos10°cos10°+sin10°sin10°)
=√6