令t=1+1/x则x=1/(t-1)f(t)=1/(x方-1)=(t方-2t+1)/(2t-t方)所以f(x)=(x方-2x+1)/(2x-x方)
令u=1+1/x则x=1/(u-1)则f(u)=1/(1/(u-1))^2-1=(u-1)^2-1即f(x)=(x-1)^2-1
f(1+1/x)=1/x^2-1=(1+1/x)^2-2(1+1/x)令1+1/x=t,f(t)=t^2-2t即f(x)=x^2-2x