(1)化简:
f(x)=sin^2wx+根号3coswx*cos(π/2-wx)
=sin^2wx+根号3coswx*sinwx
=(1-cos2wx)/2+根号3/2sin2wx
=1/2-sinπ/6*cos2wx+sin2wx*cosπ/6
=sin(2wx-π/6)+1/2
相邻两条对称轴之间的距离为π\2
T=π=2π/2w
w=1
所以 f(x)=sin(2x-π/6)+1/2
f(x)=0
则2x-π/6=2kπ-π/6
x=kπ
函数y=f(x)图像的对称中心(kπ,0)
(2)当x∈[0,π/2],且f(x)=a有实数解时
2x-π/6∈[-π/6,π5/6]
sin(2x-π/6)+1/2=a
sin(2x-π/6)=a-1/2
-1/2≤a-1/2≤1
则0≤a≤3/2