原式的通项an=1/(8n(n+1)(n+2))
=(1/16)*[1/n(n+1)-1/(n+1)(n+2)]
设bn=1/n(n+1),cn=1/(n+1)(n+2)
则an=1/16 * (bn-cn)
所以原式=1/16 * (b1-c1+b2-c2+…+b48-c48)
因为bn=1/n(n+1)=1/n - 1/n+1
所以s1=b1+b2+…+b48
=1- 1/2 +1/2 - 1/3 +…+ 1/48 -1/49
=1- 1/49
=48/49
同理cn=1/(n+1)(n+2)=1/(n+1) - 1/(n+2)
所以 s2=c1+c2+…+c48
=1/2 - 1/3 + 1/3 - 1/4 +…+ 1/49 - 1/50
=1/2 - 1/50
=12/25
所以原式=1/16 * (48/49 - 12/25)
=1/16 * 612/(49*25)
=153/4900
1/2*4*6+1/4*6*8+......+1/96*98*100
=1/8(1/1*2*3+1/2*3*4...1/48*49*50)
=1/16(1/1*2-1/2*3+1/2*3-1/2*4..+1/48*49-1/49*50)
=1/16(1/1*2-1/49*50)
=1/16×(1/2-1/2450)
=1/16×1224/2450
=153/4900
明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
原式=1/4×(1/2×4-1/4×6)+1/4×(1/4×6-1/6×8)+......+1/4×(1/96×98-1/98×100)
=1/4(1/2×4-1/4×6+1/4×6-1/6×8+......+1/96×98-1/98×100)
=1/4(1/2×4-1/98×100)
=1/4(1/8-1/9800)
=153/4900