(1)
2 -1 -1 1 2
1 1 -2 1 4
4 -6 2 -2 4
3 6 -9 7 9
经过行初等变换:
1 0 -1 0 4
0 1 -1 0 3
0 0 0 1 -3
0 0 0 0 0
∴通解为:x1=4+k x2=3+k x3=k x4=-3 (k为任意实数)
(2)A=(3 1 2) , B=(0 1 1) A+B=(3 2 3)
设 与 A+B 正交的向量为(x1, x2, x3)
则:3x1+2x2+3x3=0 x1=-2/3 x2-x3
x1=2k1+2k2, x2=-3k1, x3=-k2
∴与A+B 正交的向量为(2k1+2k2, -3k1, -k2) (k1,k2为任意实数)
(3)
2 2 1 1 0 0 1 1 1/2 1/2 0 0
3 1 5 0 1 0 ===》0 -2 7/2 -3/2 1 0
3 2 3 0 0 1 0 -1 3/2 -3/2 0 1
1 0 2 -1 0 1 1 0 2 -1 0 1
===》0 0 1/2 3/2 1 -2==>0 1 -3/2 3/2 0 -1
0 1 -3/2 3/2 0 -1 0 0 1 3 2 -4
1 0 0 -7 -4 9
==> 0 1 0 6 3 -7
0 0 1 3 2 -4
-7 -4 9
∴ A^(-1)= 6 3 -7
3 2 -4