(1)∠BPC=∠ABC/2 , ∠PCB=∠ACB/2
∠BPC=180-(∠BPC+∠PCB)=180-(∠ABC/2+∠ACB/2)=180-(180-∠A)/2=90+∠A/2
(2)∠PBC=∠ABC/2 , ∠ACP=∠ACE/2 , ∠ACE=180-∠ACB
∠BPC=180-∠PBC-∠BCP=180-∠ABC/2-(∠ACB+∠ACP)=180-∠ABC/2-[∠ACB+(180-∠ACB)/2]=180-∠ABC/2-(90+∠ACB/2)=90-(∠ABC+∠ACB)/2=90-(180-∠A)/2=∠A/2
(3)∠PBC=∠MBC/2 , ∠MBC=180-∠ABC
∠PCB=∠BCN/2 , ∠BCN=180-∠ACB
∠P=180-(∠PBC+∠PCB)=180-(∠MBC+∠BCN)/2=180-(360-∠ABC-∠ACB)/2=180-360/2+(∠ABC+∠ACB)/2=(180-∠A)/2=90-∠A/2
=1/2(
2.
3.
(1)∠BPC=180-1/2(∠ABC+∠ACB)
∠A=180-(∠ABC+∠ACB)
∠BPC=90+1/2∠A
(2)∠ACE=∠A+∠ABC
∠PCE=∠BPC+∠PBC=1/2∠ACE
∠ABC=2∠PBC
∠BPC=1/2∠A
(3)∠P=180-(∠PBC+∠PCB)
=180-1/2(∠MBC+∠BCN)
=180-1/2(180-∠ABC+180-∠ACB)
=180-1/2(360-(∠ABC+∠ACB))
=180-1/2(360-(180-∠A))
=90-1/2∠A
解:
∵∠A+∠ABC+∠ACB=180
∴∠ABC+∠ACB=180-∠A
∵BP平分∠ABC
∴∠PBC=∠ABC/2
∵CP平分∠ACB
∴∠PCB=∠ACB/2
∵∠BPC+∠PBC+∠PCB=180
∴∠BPC=180-(∠PBC+∠PCB)
=180-(∠ABC/2+∠ACB/2)
=180-(∠ABC+∠ACB)/2
=180-(180-∠A)/2
=90+∠A/2
解:﹙1﹚,∠p=90°+½∠A
﹙2﹚,∠p=½∠A
﹙3﹚,∠p=90°-½∠A
1,a=180度-2p 因为180-1/2∠ABC-1/2∠ACB=∠P且180-∠ABC-∠ACB=∠A
2,1/2∠ABC+1/2(180度-(180度-∠A-∠ABC))+∠P=180度->∠ABC+1/2∠A+∠P=180度
3,∠ABC+∠A+∠ACB=180度,1/2(180度-∠ABC)+1/2(180度-∠ACB)+∠P=180度->2∠A+∠P=180度