(1) AC = 4
P到C需3秒, 到A需(3 + 4)/2 = 7秒, 到B需(3 + 4 + 5)/1 = 12秒
Q到A需4/2 = 2秒, 到B需(4 + 5)/2 = 9/2秒, 此时P在CA上, 所以B回头
P到A时, Q回头后运行了7 - 9/2 = 5/2秒, 回头后运行了2*5/2 = 5 = BA, 此时Q也恰好在A点,即t = 7
(2)
为方便起见,取坐标系,C为原点,CA为+x方向, CB为+y方向
(a) P在BC上, Q在CA上, 则CP = CQ
CP = BC - PB = 3 - t
CQ = 2t
CP = CQ, 3 - t = 2t, t = 1
(b) P在BC上, Q在AB上(尚未到达B)
t秒时 (0 < t < 3)
BP = t, CP = 3 - t, P(0, 3 - t)
AQ = C-A-Q - CA = 2t - 4
Q的横坐标 = A的横坐标 - AQcos∠BAC = 4 - (2t - 4)*4/5 = (36 - 8t)/5
Q的纵坐标 = AQsin∠BAC = (2t - 4)*3/5
Q((36 - 8t)/5, (2t - 4)*3/5)
(i) CP = CQ
(3 - t)² = [(36 - 8t)/5]² + [(2t - 4)*3/5]²
无解(自己证明)
(ii) PC = PQ
(3 - t)² = [(36 - 8t)/5]² + [(2t - 4)*3/5 - 3 + t]²
无解(自己证明)
(iii) QC = QP, Q在的CP中垂线上
(2t - 4)*3/5 = (0 + 3 - t)/2
t = 39/17
(3)
①
C-A-B = 9, t > 9/2
此时Q在CA上
CP = B-C-P - CB = t - 3
P(t - 3, 0)
BQ = C-A-B-Q - C-A-B = 2t - 9
Q的横坐标 = BQsin∠ABC =(2t - 9)*4/5
Q的纵坐标 = B的纵坐标 - BQcos∠ABC = 3 - (2t - 9)*3/5 = (42 - 6t)/5
s = (1/2)CP*Q的纵坐标
= (1/2)(t - 3)(42 - 6t)/5
= 3(t - 3)(7 - t)/5
②
s = 3(t - 3)(7 - t)/5为与横轴交于(3, 0), (7, 0), 开口向下的抛物线
对称轴为t = (3 + 7)/2 = 5, 此时s最大
P(2, 0), Q(4/5, 12/5)
此时P为CA的中点
将△ABC沿直线PD折叠,使点A落在直线PC上, P可能在C, P间任何一点,题似乎有问题。
(一) :(1 2)t=3 4 5 4 5
t=7,也就是相遇在A点
(二):应该有3次等腰三角形的可能,分3种情况分析
第一次,t<2(Q在CA上,P在BC上)
PC=QC,
3–t=2t∴t=1
第二种情况,P在AC上,Q在BC上到达B点前
即2
t=29/7
第三种情况,从B点返回,相遇前最后一个等腰三角形,即7>t>4.5
(t–3)²=((2t–4–5)*4/5)² ((14–2t)*3/5)²
解方程得,2个解,t=5.4,和t=7(不符,舍去)
(1):6
(2):1
(3):①S=5分之3(7-t)² (4.5≤t≤6)
②题意叙述不清