DNA的生物合成 一、遗传学的中心法则和反中心法则: DNA通过复制将遗传信息由亲代传递给子代;通过转录和翻译,将遗传信息传递给蛋白质分子,从而决定生物的表现型。DNA的复制、转录和翻译过程就构成了遗传学的中心法则。但在少数RNA病毒中,其遗传信息贮存在RNA中。因此,在这些生物体中,遗传信息的流向是RNA通过复制,将遗传信息由亲代传递给子代;通过反转录将遗传信息传递给DNA,再由DNA通过转录和翻译传递给蛋白质,这种遗传信息的流向就称为反中心法则。 二、DNA复制的特点: 1.半保留复制:DNA在复制时,以亲代DNA的每一股作模板,合成完全相同的两个双链子代DNA,每个子代DNA中都含有一股亲代DNA链,这种现象称为DNA的半保留复制(semiconservative replication)。DNA以半保留方式进行复制,是在1958年由M. Meselson 和 F. Stahl 所完成的实验所证明。 2.有一定的复制起始点:DNA在复制时,需在特定的位点起始,这是一些具有特定核苷酸排列顺序的片段,即复制起始点(复制子)。在原核生物中,复制起始点通常为一个,而在真核生物中则为多个。 3.需要引物(primer):DNA聚合酶必须以一段具有3'端自由羟基(3'-OH)的RNA作为引物,才能开始聚合子代DNA链。RNA引物的大小,在原核生物中通常为50~100个核苷酸,而在真核生物中约为10个核苷酸。 4.双向复制:DNA复制时,以复制起始点为中心,向两个方向进行复制。但在低等生物中,也可进行单向复制。 5.半不连续复制:由于DNA聚合酶只能以5'→3'方向聚合子代DNA链,因此两条亲代DNA链作为模板聚合子代DNA链时的方式是不同的。以3'→5'方向的亲代DNA链作模板的子代链在聚合时基本上是连续进行的,这一条链被称为领头链(leading strand)。而以5'→3'方向的亲代DNA链为模板的子代链在聚合时则是不连续的,这条链被称为随从链(lagging strand)。DNA在复制时,由随从链所形成的一些子代DNA短链称为冈崎片段(Okazaki fragment)。冈崎片段的大小,在原核生物中约为1000~2000个核苷酸,而在真核生物中约为100个核苷酸。 三、DNA复制的条件: 1.底物:以四种脱氧核糖核酸(deoxynucleotide triphosphate)为底物,即dATP,dGTP,dCTP,dTTP。 2.模板(template):以亲代DNA的两股链解开后,分别作为模板进行复制。 3.引发体(primosome)和RNA引物(primer):引发体由引发前体与引物酶(primase)组装而成。引发前体是由若干蛋白因子聚合而成的复合体;引物酶本质上是一种依赖DNA的RNA聚合酶(DDRP)。 4.DNA聚合酶(DNA dependent DNA polymerase, DDDP): ⑴种类和生理功能:在原核生物中,目前发现的DNA聚合酶有三种,分别命名为DNA聚合酶Ⅰ(pol Ⅰ),DNA聚合酶Ⅱ(pol Ⅱ),DNA聚合酶Ⅲ(pol Ⅲ),这三种酶都属于具有多种酶活性的多功能酶。pol Ⅰ为单一肽链的大分子蛋白质,具有5'→3'聚合酶活性、3'→5'外切酶活性和5'→3'外切酶的活性;其功能主要是去除引物、填补缺口以及修复损伤。pol Ⅱ具有5'→3'聚合酶活性和3'→5'外切酶活性,其功能 不明。pol Ⅲ是由十种亚基组成的不对称二聚体,具有5'→3'聚合酶活性和3'→5'外切酶活性,与DNA复制功能有关。 在真核生物中,目前发现的DNA聚合酶有五种。其中,参与染色体DNA复制的是pol α(延长随从链)和pol δ(延长领头链),参与线粒体DNA复制的是pol γ,polε与DNA损伤修复、校读和填补缺口有关,pol β只在其他聚合酶无活性时才发挥作用。 ⑵DNA复制的保真性:为了保证遗传的稳定,DNA的复制必须具有高保真性。DNA复制时的保真性主要与下列因素有关:①遵守严格的碱基配对规律;②在复制时对碱基的正确选择;③对复制过程中出现的错误及时进行校正。 5.DNA连接酶(DNA ligase):DNA连接酶可催化两段DNA片段之间磷酸二酯键的形成,而使两段DNA连接起来。该酶催化的条件是:① 需一段DNA片段具有3'-OH,而另一段DNA片段具有5'-Pi基;② 未封闭的缺口位于双链DNA中,即其中有一条链是完整的;③ 需要消耗能量,在原核生物中由NAD+供能,在真核生物中由ATP供能。 6.单链DNA结合蛋白(single strand binding protein, SSB):又称螺旋反稳蛋白(HDP)。这是一些能够与单链DNA结合的蛋白质因子。其作用为:①稳定单链DNA,便于以其为模板复制子代DNA;② 保护单链DNA,避免核酸酶的降解。 7.解螺旋酶(unwinding enzyme):又称解链酶或rep蛋白,是用于解开DNA双链的酶蛋白,每解开一对碱基,需消耗两分子ATP。 8.拓扑异构酶(topoisomerase):拓扑异构酶可将DNA双链中的一条链或两条链切断,松开超螺旋后再将DNA链连接起来,从而避免出现链的缠绕。 四、DNA生物合成过程: 1.复制的起始: ⑴预引发:①解旋解链,形成复制叉:由拓扑异构酶和解链酶作用,使DNA的超螺旋及双螺旋结构解开,形成两条单链DNA。单链DNA结合蛋白(SSB)结合在单链DNA上,形成复制叉。DNA复制时,局部双螺旋解开形成两条单链,这种叉状结构称为复制叉。②引发体组装:由引发前体蛋白因子识别复制起始点,并与引发酶一起组装形成引发体。 ⑵引发:在引发酶的催化下,以DNA链为模板,合成一段短的RNA引物。 2.复制的延长: ⑴聚合子代DNA:由DNA聚合酶催化,以亲代DNA链为模板,从5'→3'方向聚合子代DNA链。 ⑵引发体移动:引发体向前移动,解开新的局部双螺旋,形成新的复制叉,随从链重新合成RNA引物,继续进行链的延长。 3.复制的终止: ⑴去除引物,填补缺口: RNA引物被水解,缺口由DNA链填补,直到剩下最后一个磷酸酯键的缺口。 ⑵连接冈崎片段:在DNA连接酶的催化下,将冈崎片段连接起来,形成完整的DNA长链。 ⑶真核生物端粒(telomere)的形成:端粒是指真核生物染色体线性DNA分子末端的结构部分,通常膨大成粒状。线性DNA在复制完成后,其末端由于引物RNA的水解而可能出现缩短。故需要在端粒酶(telomerase)的催化下,进行延长反应。端粒酶是一种RNA-蛋白质复合体,它可以其RNA为模板,通过逆转录过程对末端DNA链进行延长。 五、DNA的损伤: 由自发的或环境的因素引起DNA一级结构的任何异常的改变称为DNA的损伤。常见的DNA的损伤包括碱基脱落、碱基修饰、交联,链的断裂,重组等。引起DNA损伤的因素有: 1.自发因素: (1)自发脱碱基:由于N-糖苷键的自发断裂,引起嘌呤或嘧啶碱基的脱落。 (2)自发脱氨基:C自发脱氨基可生成U,A自发脱氨基可生成I。 (3)复制错配:由于复制时碱基配对错误引起的损伤。 2.物理因素:由紫外线、电离辐射、X射线等引起的DNA损伤。其中,X射线和电离辐射常常引起DNA链的断裂,而紫外线常常引起嘧啶二聚体的形成,如TT,TC,CC等二聚体。 3.化学因素: (1)脱氨剂:如亚硝酸与亚硝酸盐,可加速C脱氨基生成U,A脱氨基生成I。 (2)烷基化剂:这是一类带有活性烷基的化合物,可提供甲基或其他烷基,引起碱基或磷酸基的烷基化,甚至可引起邻近碱基的交联。 (3)DNA加合剂:如苯并芘,在体内代谢后生成四羟苯并芘,与嘌呤共价结合引起损伤。 (4)碱基类似物:如5-FU,6-MP等,可掺入到DNA分子中引起损伤或突变。 (5)断链剂:如过氧化物,含巯基化合物等,可引起DNA链的断裂。 六、DNA突变的类型: 1.点突变:转换——相同类型碱基的取代。颠换——不同类型碱基的取代。插入——增加一个碱基。缺失——减少一个碱基。 2.复突变:插入—— 增加一段顺序。缺失—— 减少一段顺序。倒位—— 一段碱基顺序发生颠倒。易位—— 一段碱基顺序的位置发生改变。重组—— 一段碱基顺序与另一段碱基顺序发生交换。 七、DNA突变的效应: 1.同义突变:基因突变导致mRNA密码子第三位碱基的改变但不引起密码子意义的改变,其翻译产物中的氨基酸残基顺序不变。 2.误义突变:基因突变导致mRNA密码子碱基被置换,其意义发生改变,翻译产物中的氨基酸残基顺序发生改变。 3.无义突变:基因突变导致mRNA密码子碱基被置换而改变成终止暗码子,引起多肽链合成的终止。 4.移码突变:基因突变导致mRNA密码子碱基被置换,引起突变点之后的氨基酸残基顺序全部发生改变。 八、DNA损伤的修复: DNA损伤的修复方式可分为直接修复和取代修复两大类。直接修复包括光复活、转甲基作用和直接连接作用,均属于无差错修复。取代修复包括切除修复、重组修复和SOS修复,后二者属于有差错倾向修复。 1.光复活:由光复活酶识别嘧啶二聚体并与之结合形成复合物,在可见光照射下,酶获得能量,将嘧啶二聚体的丁酰环打开,使之完全修复。 2.转甲基作用:在转甲基酶的催化下,将DNA上的被修饰的甲基去除。此时,转甲基酶自身被甲基化而失活。 3.直接连接:DNA断裂形成的缺口,可以在DNA连接酶的催化下,直接进行连接而封闭缺口。 4.切除修复:这种修复机制可适用于多种DNA损伤的修复。该修复机制可以分别由两种不同的酶来发动,一种是核酸内切酶,另一种是DNA糖苷酶。①特异性的核酸内切酶(如原核中的UvrA、UvrB和UvrC)或DNA糖苷酶识别DNA受损伤的部位,并在该部位的5'端作一切口;②由核酸外切酶(或DNA聚合酶Ⅰ)从5'→3'端逐一切除损伤的单链;③在DNA聚合酶的催化下,以互补链为模板,合成新的单链片段以填补缺口;④由DNA连接酶催化连接片段,封闭缺口。 5.重组修复:①DNA复制时,损伤部位导致子链DNA合成障碍,形成空缺;②此空缺诱导产生重组酶(重组蛋白RecA),该酶与空缺区结合,并催化子链空缺与对侧亲链进行重组交换;③对侧亲链产生的空缺以互补的子链为模板,在DNA聚合酶和连接酶的催化下,重新修复缺口;④亲链上的损伤部位继续保留或以切除修复方式加以修复。 6.SOS修复:这是一种在DNA分子受到较大范围损伤并且使复制受到抑制时出现的修复机制,以SOS借喻细胞处于危急状态。