在1/2处泰勒展开:
f(1) = f(1/2)+f’(1/2)*1/2+f’’(1/2)/2*(1/2)^2 +f’’’(t)/6*(1/2)^3
= f(1/2) + f’’(1/2)/8+f’’’(t)/48,
其中 1/2<t<1
类似,有:
f(0)= f(1/2) + f’’(1/2)/8-f’’’(s)/48,
其中 0<s<1/2
两式向减得:
2-1 = (f’’’(s)+f’’’(t))/48
f’’’(s)+f’’’(t)= 48
所以 2max{|f’’’(s)|,|f’’’(t)|}>=
|f’’’(s)|+|f’’’(t)|>=f’’’(s)+f’’’(t)= 48
==> max{|f’’’(s)|,|f’’’(t)|}>= 24
所以成立
第2种方法:
f(x)=f(1/2)+f'(1/2)(x-1/2)+f''(1/2)(x-1/2)^2/2+f'''(ξ)(x-1/2)^3/6
所以
f(1)=1=f(1/2)+f''(1/2)/8+f'''(ξ1)/48,1/2<ξ1<1
f(0)=0=f(1/2)+f''(1/2)/8-f'''(ξ2)/48,0<ξ2<1/2
两式相减
f'''(ξ1)+f'''(ξ2)=48
到这儿就很明显了
f'''(ξ1)+f'''(ξ2)=48
令f'''(ξ1)=24+p
所以f'''(ξ2)=24-p
f'''(ξ1)和f'''(ξ2)中总有一个大于或等于24
所以存在f'''(a)=max{f'''(ξ1),f'''(ξ2)}≥24
所以存在a∈(0,1),使得|f'''(a)|≥24
f(0)=f(1/2)+f'(1/2)(-1/2)+f''(1/2)(-1/2)^2/2!+f'''(a)(-1/2)^3/3! (1)
f(1)=f(1/2)+f'(1/2)(1/2)+f''(1/2)(1/2)^2/2!+f'''(b)(1/2)^3/3! (2)
(1)-(2)得:-1=-f'''(a)/48-f'''(b)/48
f'''(a)+f'''(b)=48,故在(0,1)内存在a,b使得f'''(a)<=24<=f'''(b).