赤霉素
英文名称:gibberellin
简称:GA
一般分为自由态及结合态两类,统称赤霉素,分别被命名为GA1,GA2等赤霉素都含有(-)-赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。在高等植物中赤霉素的最近前体一般认为是贝壳杉烯。各种不同的赤霉素之间的差别在于双键、羟基的数目和位置。自由态赤霉素是具19C或20C的一、二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯,易溶于水。
赤霉素可以用甲醇提取。不同的赤霉素可以用各种色谱分析技术分开。提纯的赤霉素经稀释后处理矮生植物,如矮生玉米,观察其促进高生长的效应,可鉴定其生物活性。不同的赤霉素生物活性不同,赤霉酸(GA3)的活性最高。活性高的化合物必须有一个赤霉环系统(环ABCD),在C-7上有羧基,在A环上有一个内酯环。
赤霉素的生理作用
促进麦芽糖的转化(诱导α—淀粉酶形成);促进营养生长(对根的生长无促进作用,但显著促进茎叶的生长),防止器官脱落和打破休眠等。
赤霉素最突出的作用是加速细胞的伸长(赤霉素可以提高植物体内生长素的含量,而生长素直接调节细胞的伸长),对细胞的分裂也有促进作用,它可以促进细胞的扩大(但不引起细胞壁的酸化)
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素 生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。
植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。1.生长素的生物合成
IAA的合成前体:色氨酸(tryptophan,Trp)。其侧链经过转氨、脱羧、氧化等反应。锌是色氨酸合成酶的组分,缺锌时导致由吲哚和丝氨酸结合而形成色氨酸的过程受阻,色氨酸含量下降,从而影响IAA的合成。生产上常引起苹果、梨等果树的小叶病。
2.生长素的结合和降解
植物体内生长素有两种形式:游离型:有生物活性,束缚型:活性低。
在体内,吲哚乙酸常常与天门冬氨酸结合成为吲哚乙酰天冬氨酸酯。还可与肌醇结合成吲哚乙醇肌醇。与葡萄糖结合成吲哚乙酰葡萄糖苷。与蛋白质结合成吲哚乙酸—蛋白质络合物。束缚型的生长素可能是生长素在细胞内的一种贮存形式,也是减少过剩生长素的解毒方式,在适当的条件下(pH9-10),它们可转变为游离型,经运输转移到作用部位起作用。
正在生长的种子中生长素的量也多,但完全成熟以后,大部分以束缚态贮藏起来。种子中以束缚态存在,萌发时转变为游离型。
生长素的降解(Degradation of IAA)
①酶氧化降解:吲哚乙酸氧化酶分解
植物体内生长素常处于合成与分解的动态平衡中。吲哚乙酸氧化酶(IAA oxidase)是一种含Fe的血红蛋白。IAA经酶解后形成3—羟基甲基氧吲哚和3—甲基氧吲哚。此反应要在O2存在下,以Mn和一元酚作辅助因子,吲哚乙酸氧化酶才表现活性。
②光氧化分解:
X-光,紫外光,可见光对IAA都有破坏作用,分解产物也是3-亚甲基氧化吲哚和吲哚醛。但目前机制不清楚,在试管里,植物的某些色素,如核黄素,紫黄质等能大量吸收兰光,并促进IAA的光氧化分解。
植物体内生长素存在的两种形式间的转化或吲哚乙酸氧化酶对IAA的氧化分解都是植物对体内生长素水平的自动调节,对植物生长的调控是有重要意义的。