令y/x=u
则y'=u+xu'
所以u+xu'=u-sinu
xdu/dx=-sinu
-du/sinu=dx/x
两边积分,
左边=-∫sinudu/sin^2(u)
=∫d(cosu)/(1-cos^2(u))
=1/2∫(1/(1+cosu)+1/(1-cosu))d(cosu)
=1/2ln|(1+cosu)/(1-cosu)|+C
=ln|(1+cosu)/sinu|+C
=ln|cscu+cotu|+C
右边=ln|x|+C
所以cscu+cotu=Cx
即csc(y/x)+cot(y/x)=Cx