奥数题:(1+1⼀2)*(1-1⼀2)*(1+1⼀3)*(1-1⼀3)*....*(1+1⼀99)*(1-1⼀99)=

2025-02-25 19:55:00
推荐回答(1个)
回答1:

原式=[(1-1/2)*(1-1/3)*...*(1-1/99)] *[(1+1/2)*(1+1/3)...*(1+1/99)] =(1/2*2/3*...*98/99)*(3/2*4/3*...*100/99)=(1/99)*(100/2) =50/99. 答案是:50/99 (1-1/2)*(1+1/2)*(1-1/3)*(1+1/3)...*(1-1/99)*(1+1/99) 先算各个括号里的 =(1/2)*(3/2)*(2/3)*(4/3)*(3/4)*(5/4)*...(98/99)*(100/99) =分子与分母相同的就相抵消 最后剩下 =(1/2)*(100/99) =50/99 这种题,首先你把前几步写出来,找规律 方法就那几种,看多了,做多了就熟练了