1^2+(1×2)^2+2^2 = 9 =3^2
2^2+(2×3)^2+3^2 = 49 =7^2
3^2+(3×4)^2+4^2 = 169 = 13^2
...
(1)可以得到 n^2 + (n(n+1))^2 + (n+1)^2 = (n(n+1)+1)^2
(2)
上面等式的右边
(n(n+1)+1)^2
=(n(n+1))^2+2n(n+1)+1
=(n(n+1))^2+2n^2+2n+1
=(n(n+1))^2+n^2+n^2+2n+1
=(n(n+1))^2+n^2+(n+1)^2
=n^2+(n(n+1))^2+(n+1)^2
所以得证