函数f(x)=(1/4)x⁴-(2/3)x³+(1/2)x²的所有极值点与零点之和为解:令f'(x)=x³-2x²+x=x(x²-2x+1)=x(x-1)²=0,得极值点x₁=0,x₂=1;再令f(x)=(1/4)x⁴-(2/3)x³+(1/2)x²=(1/12)x²(3x²-8x+6)=0,得零点x₃=0,x₄=[4+(√2)i]/3x₅=[4-(√2)i]/3;故x₁+x₂+x₃+x₄+x₅=0+1+0+[4+(√2)i]/3+[4-(√2)i]/3=1+8/3=11/3.