It suffices to show f'<=0, i.e., it suffices to show
f1(x)=x^2/(1+x)-ln^2{1+x}>=0.
Since f1(0)=0, it suffices to show f1'>=0, i.e., it suffices to show
f2(x)=x(2+x)-2(1+x)ln{1+x}>=0.
Since f2(0)=0, it suffices to show f2'>=0, i.e., it suffices to show
f3(x)=1+x-ln{1+x}>=0.
Since f3(0)=1>0, it suffices to show f3'>=0, i.e.,
1-1/(1+x)>=0, which is easy to check. This completes the proof.
上面的证明有一个好处就是思路清晰。其实有一点技巧,就是每次选取“合适的”新函数f1,f2,f3,使得随后的计算量锐减。最后一步,如果你记得当x>=1时x>=ln{x},那么总共两步就证完。