(log4^3+log8^3)(log3^2+log9^2)不会作了,帮帮忙,写的详细一点,最好不要漏式子。

2024-12-15 12:32:37
推荐回答(5个)
回答1:

(log₄3+log₈3)(log₃2+log₉2)=?

解:原式=[(1/2)log₂3+(1/3)log₂3][log₃2+(1/2)log₃2]=[(5/6)log₂3][(3/2)log₃2]=(5/6)(3/2)=5/4
其中(log₂3)(log₃2)=1

回答2:

你好:

(log4^3+log8^3)(log3^2+log9^2)

=(log2^6+log2^9)(log3^2+log3^4)
=(6log2+9log2)*(2log3+4log3)
=15log2*6log3
=90log2*log3

希望对你有帮助!

回答3:

(log4^3+log8^3)(log3^2+log9^2)

=(log(2^2)^3+log(2^3)^3)(log3^2+log(3^2)^2)
=(log2^6+log2^9)(log3^2+log3^4)
=(6log2+9log2)(2log3+4log3)
=15log2*6log3
=90log2log3

回答4:

(log4^3+log8^3)(log3^2+log9^2) 题目lg4^3吧,要不没有底数怎么搞,,

=(log(2^2)^3+log(2^3)^3)(log3^2+log(3^2)^2)
=(log2^6+log2^9)(log3^2+log3^4)
=(6log2+9log2)(2log3+4log3)
=15log2*6log3=90log2log3 应该

回答5:

(log4^3+log8^3)(log3^2+log9^2)=(3log4+3log4^2)(2log3+2log3^2)=(3log4+6log4)(2log3+4log3)=(9log4)(6log3)=54log4log3=108log2log3