∵cos(α - β)= -4/5 , cos(α + β)= 4/5
α - β∈(π/2 , π) ,α + β∈(3π//2 , 2π),
∴sin(α-β)=√[1-cos²(α-β)]=3/5
sin(α + β)=- √[1-cos²(α+β)]=-3/5
∴cos(2α)=cos[(α+β)+(α-β)]
=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)
=4/5*(-4/5)-(-3/5)*(3/5)
=-7/25
cos(2β)=cos[(α+β)-(α-β)]
=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=4/5*(-4/5)+(-3/5)*(3/5)
=-1