解:将x+y+z=1两边同时平方展开,得 x²+y²+z²+2(xy+yz+xz)=1
又 x²+y²+z²=3, 则 xy+yz+xz=-1 即 xy=-1-(x+y)z
由 x+y+z=1,得 x+y=1-z ∴ xy=-1-z(1-z)=z²-z-1
故 xyz=z(z²-z-1)=z³-z²-z 由(x+y)²≥4xy,得 -1≤z≤5/3
令导数(xyz)'=(z³-z²-z)'=3z²-2z-1=0,得 z=1或-1/3
∴ 极值为-1和5/27;而当z=-1时,z³-z²-z=-1,z=5/3时,z³-z²-z=5/27
xyz的最大值是5/27(最小值为-1)
由(x+y+z)²=1,x²+y²+z²=3,
x²+y²+z²+2xy+2xz+2yz=1
∴xy+xz+yz=-1
∵x+y+z=1,∴x+y=1-z,,①
代入xy+z(x+y)=-1,
xy+z(1-z)=-1
∴xy=-1-z+z² ②
由韦达定理:Δ=(1-z)²-4(-1-z+z²)≥0,
1-2z+z²+4+4z-4z²≥0
-3z²+2z+5≥0,
3z²-2z-5≤0,
(3z-5)(z+1)\≤0
-1≤z≤5/3
M=xyz=(-1-z+z²)z
=z³-z³-z
将z=5/3代入:最大值Mmax=5/27
将z=-1代入:最小值Mmin=-1.
x+y=1-zx^2+y^2+z^2=3 x+y+z=1平方作差得xy+xz+yz=-1xy+z(x+y)=-1xy+z(1-z)=-1 xy=-1-z(1-z) x+y=1-z看成方程判别式>=0 z在[-1,5/3]上xyz=z*(-1-z(1-z)=z^3-z^2-z求导得3z^2-2z-1导数>0有z在[-根3,-1/3]上增 在[-1/3,1]上减 在[1,根3]上增最后求得xyz最小值5/27
-1
x、y、z分别为-1,1,1