因为函数的导数等于反函数导数的倒数。arctanx 的反函数是tany=x,所以tany'=(siny/cosy)'=[(siny)'cosy-siny(cosy)']/(cosy)^2=(cos^2y+sin^2y)/cos^2y=1/cos^2y .............tany=siny/cosy=根号下(1-cos^2y)/cosy,,,,,,,,,,两边平方得tan^2y=(1-cos^2y)/cos^2y......因为上面tany=x.........所以cos^2=1/(x^2+1)........所以由上面(tany)'=1/cos^2y的得(tany)'=x^2+1然后再用倒数得(arctany)'=1/(1+x^2))
根据函数导数与其反函数导数的关系:f(x)’=1╱g(x)’,其中个g(x)为f(x)的反函数,令f(x)=arctanx
利用反函数的导数公式,有
推到公式:
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα诱导公式记忆口诀
奇变偶不变,符号看象限。
“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余 弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 一全正;二正弦;三两切;四余弦 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切和余切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”。
根据函数导数与其反函数导数的关系:f(x)’=1╱g(x)’,其中个g(x)为f(x)的反函数,令f(x)=arctanx
反正切函数是数学术语,指函数y=tanx的反函数。
计算方法:设两锐角分别为A,B则tanA=1.9/5, A=arctan1.9/5tanB=5/1.9, B=arctan5/1.9这儿可以这样表示,如果求具体的角度必须查表,没有必要用计算机等来计算。
函数y=tanx,(x∈R)的反函数,记作y=arctanx,叫做反正切函数。其值域为(-π/2,π/2)。反正切函数是反三角函数的一种。
同样,由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。
注意这里选取是正切函数的一个单调区间。