解:a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+3 =a/b+a/c+b/c+b/a+c/a+c/b+1+1+1 =[(a+b)/c+c/c]+[(a+c)/b+b/b]+[(b+c)/a+a/a] =(a+b+c)/c+(a+b+c)/b+(a+b+c)/a =0+0+0 祝学习进步,望采纳!