矩阵不讲维数,维数是线性空间的性质,空间的维数是指它的基所含向量的个数,一个矩阵不能组成线性空间,不能讲维数。在数学中,矩阵的维数说法不一,并没有定义矩阵的维数, 线性空间才有维数, 所以这造成了两种解释:1. 矩阵的维数是其行向量(或列向量)生成的向量空间的维数;2. 指它的行数与列数 (一般编程人员喜欢这样定义, 因为他们关注的是数组的大小)。你说的矩阵的秩,其实就是第1种,即矩阵的维数就是矩阵的秩。把矩阵的秩弄明白了就明白矩阵的维数是什么了。矩阵的秩就是矩阵中非零子式的最高阶数,简单来说,就是把矩阵进行初等行变换之后有非零数的行数。例如,对一个3*5矩阵进行初等行变换,最后变换成形如:┌ 1 1 1 0 3 ┐│ 0 0 2 3 0 │└ 0 0 0 0 0 ┘这样的阶梯型矩阵后,数数其中非零行的行数就能知道矩阵的秩有多少了。显然,其中第一、二行为非零行,一共有两行,所以秩r=2,也就是原矩阵维数为2。
矩阵的维数是其行向量(或列向量)生成的向量空间的维数(就是把矩阵进行初等行变换之后有非零数的行数)