解:
∵1/[(x-2)²(x-3)]=-1/(x-2)-1/(x-2)²+1/(x-3)
提示:
设1/[(x-2)²(x-3)]=a/(x-2)+b/(x-2)²+c/(x-3)=[a(x-2)(x-3)+b(x-3)+c(x-2)²]/[(x-2)²(x-3)]=[(a+c)x²+(-5a+b-4c)x+(6a-3b+4c)]/[(x-2)²(x-3)]
比系数得:a+c=0
-5a+b+4c=0
6a-3b+4c=1
解得a=-1,b=-1,c=1
∴∫1/[(x-2)²(x-3)] dx
=∫[-1/(x-2)-1/(x-2)²+1/(x-3)]dx
=-∫1/(x-2)-∫1/(x-2)²dx+∫1/(x-3)dx
=-ln|x-2|+1/(x-2)+ln|x-3|+C
=ln|(x-3)/(x-2)|+1/(x-2)+C
先分解部分分式:
1/((x-2)^2*(x-3))=a/(x-2)^2+b/(x-2)+c/(x-3)
去分母:1=a(x-3)+b(x-2)(x-3)+c(x-2)^2
1=x^2(b+c)+x(a-5b-4c)-3a+6b+4c
对比系数:
b+c=0 ,即c=-b
a-5b-4c=0,即a-5b+4b=0,得:a=b
-3a+6b+4c=1,即-3b+6b-4b=1,得:b=-1
得: a=b=-1, c=1
因此1/((x-2)^2*(x-3))=-1/(x-2)^2-1/(x-2)+1/(x-3)
其不定积分=1/(x-2)-ln|x-2|+ln|x-3|+C