1/(√3+√2)+1/(√2+1)-1/√3+1=(√3-√2)/[(√3+√2)(√3-√2)]+(√2-1)/[(√2+1)(√2-1)]-1/√3+1=(√3-√2)+(√2-1)-1/√3+1=√3-√2+√2-1-1/√3+1=√3-1/√3=√3-√3/3=2√3/3
1/(√3+√2)+1/(√2+1)-1/√3+1=(√3-√2﹚/[﹙√3+√2﹚﹙√3-√2﹚]+﹙√2-1)/[﹙√2+1)(√2-1)]-(√3-1)/[﹙√3+1)(√3-1)]=√3-√2+√2-1-(√3-1)/2=(√3-1)/2
1/(√3+√2)+1/(√2+1)-1/√3+1=(√3-√2)+(√2-1)-(√3-1)/2=(√3-1)/2