证明1-1⼀2+1⼀3-1⼀4+...+1⼀(2n-1)-1⼀2n=1⼀(n+1)+1⼀(n+2)+

...1/2n
2024-11-25 04:31:20
推荐回答(4个)
回答1:

用数学归纳法比较简单!
解析:
⑴当n=1时,等式左端=1/2=右端,显然成立!
⑵假设当n=k时,原式成立,即
1-1/2+1/3-1/4+…+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+…+1/2k.①
那么当n=k+1时,就是要证明:
1-1/2+1/3-1/4+…+1/(2k-1)-1/2k+1/(2k+1)-1/(2k+2)=1/(k+2)+1/(k+3)+…+1/2k+1/(2k+1)+1/(2k+2)②
将①式带入②式,就得
1/(k+1)+1/(2k+1)-1/(2k+2)=1/(2k+1)+1/(2k+2)
对上式左端通分得
左端=1/(2k+1)+1/(2k+2)=右端!
这也就是说原结论成立!
证毕!

回答2:

这种题目用归纳法最简单
显然n=1时成立
假设n=k也成立,有1-1/2+1/3-1/4+...+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+...+1/2k
当n=k+1时,右边=1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/(2k+2)
=1/(k+1)+1/(k+2)+1/(k+3)+...+1/2k+1/(2k+1)+1/(2k+2)-1/(k+1)
=1-1/2+1/3-1/4+...+1/(2k-1)-1/2k+1/(2k+1)-1/(2k+2)
=左边
得证

回答3:

您是不是记错题目了。当n趋近无穷大时,左式趋近于ln2。

回答4:

当n=1时
左边=1-1/2=1/2
右边=1/2+1/3+1/2=4/3
不相等
故不成立