意思就是利用式子中的对称性:令x=-t,代入得:2f(-t)+f(t)=3(-t)+2t是任意得,所以上式对x也成立:有2f(-x)+f(x)=3(-x)+2和2f(x)+f(-x)=3x+2上式-下式×2,得:-3f(x)=-9x-2所以f(x)=3x+2/3可以看出实际上就是把原来式子中的x都替换成-x,注意这不是换元(否则x=-x,x=0,不是对任意的x成立了)