已知函数f(x)=1⼀2sin2xsin φ+cos눀xcosφ-1⼀2sin(π⼀2+φ)(0<φ<π)其图像过点(π⼀6,1⼀2)

2025-01-05 01:40:29
推荐回答(2个)
回答1:

1,
0<φ<π,
f(x)=1/2sin(2x)sin φ+cos²xcosφ-1/2sin(π/2+φ)
=1/2sin(2x)sin φ+cos²xcosφ-1/2sin(π-π/2-φ)
=1/2sin(2x)sin φ+cos²xcosφ-1/2sin(π/2-φ)
=1/2sin(2x)sin φ+cos²xcosφ-1/2cosφ

f(x) 的图像过点(π/6,1/2),说明
1/2 = f(π/6) = 1/2sin(π/3)sin φ+cos²(π/6)cosφ-1/2cosφ,
而sin(π/3) = sin(60度)= 3^(1/2)/2, cos(π/6)=cos(30度)=sin(60度)=3^(1/2)/2,
所以,
1/2 = f(π/6) = 3^(1/2)sin(φ)/4 + 3cos(φ)/4 - cos(φ)/2
= (1/2){ [3^(1/2)/2]sin(φ) + (1/2)cos(φ) } ,
= (1/2)[sinφcos(π/6) + cosφsin(π/6)]
= (1/2) sin(φ+π/6),
1 = sin(φ+π/6),
φ+π/6 = kπ + π/2, k=0,1,-1,2,-2,...
而 0<φ<π, π/6<φ+π/6<7π/6,
因此,φ+π/6 = π/2, φ = π/3.

f(x)=1/2sin(2x)sin φ+cos²xcosφ-1/2cosφ=1/2sin(2x)sin(π/3)+cos²xcos(π/3)-1/2cos(π/3)
=3^(1/2)sin(2x)/4 + (1/2)[cos(x)]^2 - 1/4
=3^(1/2)sin(2x)/4 + (1/4)[2[cos(x)]^2 - 1]
=3^(1/2)sin(2x)/4 + (1/4)cos(2x)
=(1/2)[sin(2x)cos(π/6) + cos(2x)sin(π/6)]
=(1/2)sin(2x+π/6)

2,
g(x)=f(2x)=(1/2)sin(4x+π/6)=(1/2)sin(4x+π/6+2π)
=(1/2)sin[4(x+π/2) + π/6]
=g(x+π/2).
g(x)最小正周期为π/2。

3,
g(x)=f(x/2)=(1/2)sin(x+π/6)=(1/2)sin(x+π/6+2π)=g(x+2π)
g(x)最小正周期为2π。

回答2:

f(Pai/6)=1/2sinPai/3sin@+(cosPai/6)^2cos@-1/2cos@=1/2

1/2*根号3/2sin@+3/4cos@-1/2cos@=1/2
根号3sin@+cos@=2
cosPai/6sin@+cos@sinPai/6=1
sin(@+Pai/6)=1
0<@故有@=Pai/3
2.f(x)=1/2sin2x*根号3/2+cos^2x*1/2-1/4=根号3/4sin2x+(cos2x)/4=1/2sin(2x+Pai/6)
所以有g(x)=1/2sin(2x*2+Pai/6)=1/2sin(4x+Pai/6)
故最小正周期T=2Pai/4=Pai/2