f(x) = x + 1/(x - 1)
= (x - 1) + 1/(x - 1) + 1
= [(1 - x) + 1/(1 - x)] + 1
≥ 2√[(1 - x) × 1/(1 - x)] + 1
= 3
f(x)min = 3 此时 x=2时 原式最小值为3
x>1,(1,+无穷)x2>x1 ,x2-x1 >0
f(x1)-f(x2)=2/(x2+1)-2/(x1+1)=2((x1-x2)/(x2+1)(x1+1)<0,
x2-x1 >0, x2-x1 <0 ,(x2+1)(x1+1)>0
f(x)(1,+无穷)增函数,当x=1有最小值 ,最小值 f(1)=x+1/x-1=0
f(x)=(x-1)+1/(x-1)+1>=2根号下((x-1)*1/(x-1))+1=3
x-1=1;
x=2
所以x=2最小。最小为3
最小值为1 当x=1时 对f(x)求导等零 解的