解(1)当n=1时,a1=S1=3;
当n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1.
又n=1时,2×1+1=3成立,所以an=2n+1(n∈N*).
(2)bn=2n?(an?12)=2n?(2n?11),
由
?
bn≤bn+1
bn≤bn?1
?
2n?(2n?11)≤2n+1?(2n?9)
2n?(2n?11)≤2n?1?(2n?13)
n≥3.5 n≤4.5
所以3.5≤n≤4.5,所以n=4,所以最小项为b4=-48.