sinwxcoswx=1/2sin2wx,cos^2wx=1/2[1+cos2wx]f(x)=√3sinwxcoswx+cos^2wx-3/2 =√3/2sin2wx+1/2(1+cos2wx)-3/2 =√3/2sin2wx+1/2cos2wx-1/2 =sin(2wx+π/6)-1/2∵w>0,最小正周期为π/2∴2π/w=π/2 ∴w=4那么f(x)=sin(4x+π/6)-1/2