定义域:-1<=x<=1
1)
-1<=x<=0: -pi/2<=arcsinx<=0 pi/2<=arccosx<=pi
令arcsinx=t,x=sint, -pi/2<=t<=0
令arccosx=z,x=cosz,pi/2<=z<=pi
这时容易得到,pi/2<=t+pi<=pi sin(t+pi)=-sint=-x x=-sin(t+pi)
即cosz=-sin(t+pi) 且pi/2<=z<=pi,pi/2<=t+pi<=pi
即sin(z-pi/2)=sin(t+pi) 0<=z-pi/2<=pi/2 pi/2<=t+pi<=pi
那么只有z-pi/2+t+pi=pi 即z+t=pi/2
即arcsinx+arccosx=pi/2
2)
0<=x<=1:0<=arcsinx<=pi/2 0<=arccosx<=pi
令arcsinx=t,x=sint, 0<=t<=pi/2
令arccosx=z,x=cosz,0<=z<=pi/2
即x=sint=cos(pi/2-t)=cosz 0<=pi/2-t<=pi/2 0<=z<=pi/2
故只能pi/2-t=z 即z+t=pi/2
即arcsinx+arccosx=pi/2
3)上面折腾那么多,只是为了证明arcsinx+arccosx=pi/2。
那么导数显然为0了。