高一数学必修一定义域问题

2024-11-25 15:58:40
推荐回答(4个)
回答1:

f(x+1)的定义域是:[-1,1]
则:
f(x+1)中,x∈[-1,1]
则:
f(x+1)中,x+1∈[0,2]
得:
f(t)中,t∈[0,2]
所以:
f(|x+1|)中,|x+1|∈[0,2],得:x∈[-3,1]
即:
f(|x+1|)中,x∈[-3,1]
则:f(x+1)的定义域是:x∈[-3,1]

回答2:

题目你一定搞错了,原题应该是:

已知f(x+1)的定义域为[-1,1),则f|(|x+1|)的定义域为____ 是不是?

解法如下:f(x+1)的定义域为[-1,1),

设 t=x+1, 由x∈[-1,1),

得t∈[0,2), y=f(t)定义域 t∈[0,2),

所以 f|(|x+1|)|中 |x+1|∈[0,2) 由此解得答案是(-3,1)

回答3:

关于抽象函数的定义域,记住两句话就可以了:
1、定义域是x的取值范围
2、()里的取值范围一致.
应用上面两句话,这题应该这么做:
f(x+1)定义域为[-1,1),所以0=所以0=<|x+1|<2
解得-3

回答4:

因为 0<(x+1)<2
所以 0<|(x+1)|<2
得到 -3