因为cos(75+α)=3/5,α是第三象限,则
75+α有可能在第四象限,也有可能在第一象限,所以需要先讨论。
因为cos(75+α)=3/5<√2/2=cos315,所以75+α<315,
α<240;或75+α>405,α>330。因为α是第三象限,所以
α<240
sin(30-2α)-cos(α-45)=2sin(15-α)sin(15-α)-cos(α+75-120)=2(sin15cosα-cos15sinα)(cos15cosα+sin15sinα)-cos(α+75-120)=2cos(75+α)sin(75+α)-cos(α+75-120),
因为α<240,所以sin(75+α)=-4/5
所以sin(30-2α)-cos(α-45)=2√3/5-33/50
cos(75+α)=sin(90-(75+α))=sin(15-α)=3/5>0;
π<α<3π/2,
75+π<75+α<75+3π/2;所以75+α在第四象限;
sin(75+α)=cos(15-α)=-4/5;
sin(30-2α)
=sin2(15-α)
=2sin(15-α)cos(15-α)
=2*(3/5)*(-4/5)
=-24/25;
cos(α-45)
=cos(α-15-30)
=cos(α-15)cos30+sin(α-15)sin30
=cos(15-α)cos30-sin(15-α)sin30
=(-4/5)*(√3/2) - (3/5)*(1/2)
=-(3+4√3)/10;
sin(30-2α)-cos(α-45)
=-24/25+(3+4√3)/10
=(20√3 -33)/50.
【解】 cos(75+α)=sin(90-75-α)=sin(15-α)=3/5,
可以得到 15-α是第一象限角或者第二象限角,
又 α是第三象限角,所以15-α是第二象限角
所以cos(15-α)= -4/5.
sin(30-2α)-cos(α-45)
=2*sin(15-α)*cos(15-α)-sin(45-α)
=2*sin(15-α)*cos(15-α)-sin(15-α+30)
=2*sin(15-α)*cos(15-α)-sin(15-α)*cos30-cos(15-α)*sin30
=2*(3/5)*(-4/5)-(3/5)*(2分之根号3)-(-4/5)*(1/2)
=-14/25-(10分之3*根号3)
cos(75+α)=sin(15-a)=3/5
cos(15-a)=4/5 假设(15-a)=x
所以sin(30-2α)-cos(α-45)=sin2x-cos(75+a-2x)
=sin2x-(3/5cos2x+4/5sin2x)
=1/5sin2x-3/5cos2x
=2/5sinxcosx-3/5(1-2sinx)
=49/125
cos(75+a)=3/5,sin(75+a)=-4/5
sin(30-2a)-cos(a-45)
=2sin(15-a)cos(15-a)-cos(75+a-120)
=2sin[90-(75+a)]cos[90-(75+a)]-cos(75+a)cos120+sin(75+a)sin120
=2*3/5*(-4/5)-3/5*(-1/2)+(-4/5)*根3/2
=-33/50-4根3/10