f(x)=sin²x+根号3sinxcosx+2cos2x
=(1/2)(1+3cos2x+√3sin2x)
=√3sin(2x+π/3)+1/2,
(1)最小正周期为π,增区间由(2k-1/2)π<2x+π/3<(2k+1/2)π,k∈Z确定,
(2k-5/6)π<2x<(2k+1/6)π,
即(k-5/12)π
f(x)=sin²x+根号3sinxcosx+2cos²x
=1+(1/2)(√3sin2x+1+cos2x)
=3/2+sin(2x+π/6),
(1)最小正周期为π,增区间由(2k-1/2)π<2x+π/6<(2k+1/2)π,k∈Z确定,
(2k-2/3)π<2x<(2k+1/3)π,
即(k-1/3)π
稍后回答