因为A^2+A+E=0
所以A^2+A-2E=-3E
所以(A-E)(A+2E)=-3E
两边取行列式
得|A-E|*|A+2E|=|-3E|=(-3)^n≠0(n为阶数)
所以|A-E|≠0且|A+2E|≠0
所以A-E,A+2E均可逆
又因为(A-E)(A+2E)=-3E
所以A-E的逆矩阵为(A+2E)/(-3),A+2E的逆矩阵为(A-E)/(-3)
当已知A的等式,求与A有关的矩阵是否可逆或者让求出其可逆矩阵时,都可以由等式配凑出来
一上题为例,先求A-E的逆矩阵,则等式A^2+A+E=0一定可以配成(A+E)(?)=E的形式,在配凑时注意先配出A^2和A的一次项,那么等式变为(A+E)A=-E即(A+E)(-A)=E,所以A+E的逆矩阵就是-A,同理可配成(A+2E)(A-E)/-3=E,所以A+2E的逆矩阵是(A-E)/-3.