弧长元素ds=√(dx)^2+(dy)^2
=a√[(-sint+sint+tcost)^2+(cost-cost+tsint)^2]dt
=atdt
弧长为∫<0,π>atdt=[a/2t^2]<0,π>=a/2π^2
x=φ(t),y=ψ(t)
l=∫(α下β上)√[φ’(t)]²+[ψ’(t)] ² .dt
x=acost+atsint y=asint-atcost
dx/dt=-asint+asint+atcost=atcost
dy/dt=acost-acost+atsint=atsint
√(dx/dt)^2+(dy/dt)^2=√a^2t^2(sin^2t+cos^2t)=at
L=∫(0,pai) atdt
L=1/2at^2 (0,pai)
L=1/2a(pai)^2