(1) f(x)在(-1,+∞)有定义, f'(x) = e^x-1/(x+1).
x > 0时e^x > 1 > 1/(x+1), f'(x) > 0, f(x)单调增;
-1 < x < 0时e^x < 1 <1/(x+1), f'(x) < 0, f(x)单调减.
(2) f(0) = 1为f(x)最小值, 即有不等式e^x ≥ 1+ln(1+x). 将x = 1, 1/2, 1/3, ..., 1/n代入得:
e ≥ 1+ln(2),
e^(1/2) ≥ 1+ln(3/2),
e^(1/3) ≥ 1+ln(4/3),
...
e^(1/n) ≥ 1+ln((n+1)/n).
相加即得e+e^(1/2)+e^(1/3)+...+e^(1/n) ≥ n+ln(n+1).
(1)先确定定义域,
(2)求导并令导函数等于0
(3)分情况讨论