已知抛物线y=x눀+2(k+1)x+k눀与x轴的交点的横坐标的和大于-4,则k的取值范围是___

2024-12-16 07:44:24
推荐回答(5个)
回答1:

1题
别人已经解答了。
x1+x2>-4,即-2(k+1)>-4
[2(k+1)]²-4k²≥0
k的取值范围是[-1/2,1)

2题。
解:∵∠OBC=45°,
∴OB=OC,
∴点C,B的坐标为(0,c),(c,0);
把点B(c,0)代入二次函数y=x2+bx+c,得c2+bc+c=0,
即c(c+b+1)=0,
∵c≠0,
∴b+c+1=0.
故选D.

回答2:

设抛物线与x轴的交点的横坐标为x1,x2且x14(k+1)²-4k²≥0,-2(k+1)>-4
1/2<=k<1
∠OBC=45°,x2=c
x1x2=c
x1=1,A(1,0),B(c,0)
把A(1,0)代入y=x²+bx+c
b+c+1=0
答案: D 正确

回答3:

1.
x1+x2>-4,即-2(k+1)>-4
k+1<2
k<1

[2(k+1)]²-4k²≥0

4(2k+1)≥0
k≥-1/2
所以
k的取值范围是[-1/2,1)

2,没有图

回答4:

  • 1 因y于坐标轴有交点,所以根据根的判别公式得出K的一个范围,然后由韦达定理可求,一个范围,,,两式的交集就是答案

  • 至于第二题,图呢?

回答5:

1.Δ=[2(k+1)]²-4k²≥0
4(2k+1)≥0

k≥-1/2

1+x2>-4,
即-2(k+1)>-4
k<1
所以

k∈[-1/2,1)
2 没有图 我假设B在A右边了
Xb={-b+根号(b^2-4c)}/2
Yc=c
Xb=Yc
所以
{-b+根号(b^2-4c)}/2=c

解得4c^2-4bc+4c=0
c≠0
所以
b-c-1=0

选A