看图
分母有理化:
∫1/(1+√1-x^2)dx
=∫(1-√1-x^2)/x^2dx
=-1/x-∫√(1-x^2)/x^2dx (x=sint dx=costdt)
=-1/x-∫(cost)^2/(sint)^2dt
=-1/x-∫(1-(sint)^2)/(sint)^2dt
=-1/x+t+cott+C
=-1/x+arcsinx+√(1-x^2)/x+C
∫1/(1- √(1-x^2)) dx
let
x= sina
dx = cosa da
∫1/(1- √(1-x^2)) dx
=∫ cosa /(1- cosa) da
=-∫ [1 -1/(1-cosa)] da
= -a + ∫ (1+cosa)/(sina)^2 da
=-a + ∫ [( csca)^2+ cosa/(sina)^2 ] da
= -a - cota - 1/sina + C
=- arcsin(x) - √(1-x^2)/ x - 1/x + C