令t = 3x + 1,dt = 3 dx
t = 0,x = - 1/3
t = 4,x = 1
∫(0→4) ƒ(t) dt
= ∫(- 1/3→1) ƒ(3x + 1) * 3 dx
= 3∫(- 1/3→1) xe^(x/2) dx
= 6∫(- 1/3→1) xe^(x/2) d(x/2)
= 6∫(- 1/3→1) x d[e^(x/2)]
= 6[xe^(x/2)] |(- 1/3→1) - 6∫(- 1/3→1) e^(x/2) dx
= 6[e^(1/2) - (- 1/3)e^(- 1/6)] - 12[e^(x/2)] |(- 1/3→1)
= 6[√e + 1/(3e^(1/6))] - 12[e^(1/2) - e^(- 1/6)]
= 6√e + 2/e^(1/6) - 12√e + 12/e^(1/6)
= 14/e^(1/6) - 6√e
f(3x+1)=xe^(x/2)
令3x+1=t
x=(t-1)/3
代入得
f(t)=(t-1)/3*e^((t-1)/6)
然后用分步积分法