已知函数F(X)=sin눀X+√3sinxcosx+2cos눀X,X∈R 1 . 求函数的最小正周期 和 单调递增区间

2024-12-19 04:57:07
推荐回答(2个)
回答1:

F(x)=sin²x+√3sinxcosx+2cos²x
=(√3/2)sin2x+1+(1+cos2x)/2
=(√3/2)sin2x+(1/2)cos2x+3/2
=sin(2x+π/6)+3/2

所以最小正周期是T=2π/2=π

令2kπ-π/2<2x+π/6<2kπ+π/2,k∈Z
2kπ-2π/3<2x<2kπ+π/3,k∈Z
kπ-π/3<x<kπ+π/6,k∈Z

所以单调递增区间是(kπ-π/3,kπ+π/6),k∈Z

回答2:

化简=sinx平方+根号3/2*sin2x+cosx平方+cosx平方
=根号3/2sin2x+cosx平方+1
=根号3/2sin2x+1/2cos2x+3/2
=sin(2x+30°)+3/2
最小正周期t=2π/2=π
单增:2x+30°在{π/2+2kπ,3π/2+2kπ}k∈z
最终答案T=π,区间{π/6+kπ,2π/3+kπ}k∈z