cosα=负的五分之四
阿尔法属于二分之派到派,,
所以
sinα>0
且
sinα=√1-cos²α=5分之3
tanα=sinα/cosα=-3/4
所以
tan(α+π/4)
=(tanα+tanπ/4)/(1-tanαtanπ/4)
=(-3/4+1)/(1+3/4)
=(1/4)/(7/4)
=1/7
tan 45` = 1
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan (α + 45`) = (tan α + 1) / (1 - tan α)
cos α = - 4/5; sin α = 3 / 5; tan α = - 3/4
tan (α + 45`) = 1/7
1/7
tan(A+B) = (tanA+tanB)/(1-tanAtanB) ,得tan α+四分之派 =(tan α+1)/(1-tan α)由cosα=负的五分之四,并且由阿尔法属于二分之派到派,sinα>0,则sinα=3/5则可得tan α,带入(tan α+1)/(1-tan α)即可得1/7
sinα=3/4 tanα=﹣3/4 tan α+四分之派=﹣1/7