先计算偏导数
fx = 3-2αx-2βy,fy = 4-2βx-4αy,
fxx =-2α,fyy = -4α, fxy = -2β,
令 fx = 0,fy = 0,
可求得惟一的稳定点 x =…,y = …;由于
H = fxx*fyy -(fxy)^2 = (-4α)(-2α)-(-2β) = 4(2α^2-β^2) ,
因此,根据极值的判别法,若2α^2-β^2>0,则函数 f 有惟一的极值,且当 α>0 时是极小值,当 α<0 时是极大值。