求不定积分∫(x^2⼀(1+x^4))dx

2024-11-25 11:03:31
推荐回答(3个)
回答1:

这是个技巧比较高的积分,不是楼上答得那么简单的
∫ x²/(1+x⁴) dx
=(1/2)∫ (x²-1+x²+1)/(1+x⁴) dx
=(1/2)∫ (x²-1)/(1+x⁴) dx + (1/2)∫ (x²+1)/(1+x⁴) dx
分子分母同除以x²
=(1/2)∫ (1-1/x²)/(x²+1/x²) dx + (1/2)∫ (1+1/x²)/(x²+1/x²) dx
分子放到微分之后,然后分母凑个2出来
=(1/2)∫ 1/(x²+1/x²+2-2) d(x+1/x) + (1/2)∫ 1/(x²+1/x²-2+2) d(x-1/x)
=(1/2)∫ 1/[(x+1/x)²-2] d(x+1/x) + (1/2)∫ 1/[(x-1/x)²+2] d(x-1/x)
=(√2/8)ln|(x+1/x-√2)/(x+1/x+√2)| + (√2/4)arctan[(x-1/x)/√2] + C
=(√2/8)ln|(x²+1-√2x)/(x²+1+√2x)| + (√2/4)arctan[(x-1/x)/√2] + C

【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”。

回答2:

设tanθ=x,dx=sec²θdθ
原式=∫tan²θ/(1+(tanθ)^4)*sec²θdθ=∫1/(sin²θ+(1-sin²θ)²/sin²θ)dθ
=

回答3:

x^2/(1+x^4)={x/(1+x^2-√2x)-x/(1+x^2+√2x)}/2√2