利用分部积分法:∫udv = uv - ∫vdu
这里u=arccosx v=x
∫ arccosx dx
= xarccosx - ∫ x * [- 1/√(1 - x²)] dx
= xarccosx - (1/2)∫ 1/√(1 - x²) d(1 - x²)
= xarccosx - (1/2) * 2√(1 - x²) + C
= xarccosx - √(1 - x²) + C
可以用反函数来做
y=arccosx,
∫arccosxdx=∫ydcosy=ycosy-∫cosydy
=ycosy-siny+C
=xarccosx-√(1-x^2)+C
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
答案是-1/√1-x^2(负根号1-x^2分之一)
∫ arccosx dx
= xarccosx - ∫ x * [- 1/√(1 - x²)] dx
= xarccosx - (1/2)∫ 1/√(1 - x²) d(1 - x²)
= xarccosx - (1/2) * 2√(1 - x²) + C
= xarccosx - √(1 - x²) + C
-arcsinx+C