(1)已知a,b,c为任意实数,求证:a2+b2+c2≥ab+bc+ca;(2)设a,b,c均为正数,且a+b+c=1,求证:ab+

2025-02-25 17:14:51
推荐回答(1个)
回答1:

解答:证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,
三式相加即得a2+b2+c2≥ab+bc+ca,(6分)
(2)因为(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=1,a2+b2+c2≥ab+bc+ca,
所以ab+bc+ca≤
1
3
(12分)